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ABSTRACT
Thousands of genes are expressed at such very low levels (�1 copy per cell) that global gene expression

analysis of rarer transcripts remains problematic. Ambiguity in identification of rarer transcripts creates
considerable uncertainty in fundamental questions such as the total number of genes expressed in an
organism and the biological significance of rarer transcripts. Knowing the distribution of the true number
of genes expressed at each level and the corresponding gene expression level probability function (GELPF)
could help resolve these uncertainties. We found that all observed large-scale gene expression data sets
in yeast, mouse, and human cells follow a Pareto-like distribution model skewed by many low-abundance
transcripts. A novel stochastic model of the gene expression process predicts the universality of the GELPF
both across different cell types within a multicellular organism and across different organisms. This model
allows us to predict the frequency distribution of all gene expression levels within a single cell and to
estimate the number of expressed genes in a single cell and in a population of cells. A random “basal”
transcription mechanism for protein-coding genes in all or almost all eukaryotic cell types is predicted.
This fundamental mechanism might enhance the expression of rarely expressed genes and, thus, provide
a basic level of phenotypic diversity, adaptability, and random monoallelic expression in cell populations.

GENE expression within a cell is a complex process lem (Bishop et al. 1974; Velculescu et al. 1999). An
involving chromatin remodeling, transcription, important current issue for gene identification is de-

and export of RNA from the nucleus to the cytoplasm termining the true statistical distributions of the number
where mRNA molecules are translated into proteins. of genes expressed at all possible expression levels, both
The physiological activity and cell differentiation of a in a single cell and in a population of cells. Identification
mammalian cell is controlled by 10,000 or more protein- of such distributions can provide a theoretical basis for
coding genes associated with �300,000–500,000 mRNA accurately counting the number of expressed genes and
transcripts (Bishop et al. 1974). The complete gene expres- the total number of genes in a given cell type and for
sion profile for a given set of cells is the list of all ex- better understanding the mechanism(s) governing the
pressed genes, together with each gene’s expression level expression of thousands of genes at very low levels. The
defined as the average number of cytoplasmic mRNA similar problem of estimating the distribution of species
transcripts per cell. Currently, gene expression profiling in a population or different alleles in a population has
methods (e.g., serial analysis of gene expression (SAGE; been intensively discussed (see for references Huang
Velculescu et al. 1995, 1999), cDNA, or oligonucleo- and Weir 2001).
tide microarrays (Holstege et al. 1998; Jelinsky and The statistics of expressed genes can be partially speci-
Samson 1999) measure gene transcripts from large num- fied by the proportions of expressed genes that have
bers of cells (i.e., not a single cell) and cannot reliably one, two, etc. transcripts present in an associated mRNA
detect the thousands of genes that are expressed at very sample (i.e., a normalized histogram of gene expression
low copy numbers (less than two per cell). Many of these levels). Analysis of such empirical histograms using
lower-level transcripts may be essential for determining large-scale gene expression databases leads to models
normal and pathological cell phenotypes (Chen et al. of the underlying gene expression level probability func-
2000; Ohlsson et al. 2001). However, a rationale for tions (GELPF) in a cell and in a population of cells.
an extreme number of rare transcripts has remained Interestingly, similar gene expression “patterns” in dif-
unresolved. ferent cells were observed �25 years ago by RNA-DNA

Determination of biologically significant expressed hybridization (Bishop et al. 1974). These and more re-
genes in eukaryotic cells is a challenging biological prob- cent gene expression data sets have demonstrated very

broad ranges of gene transcript levels (i.e., from 0.1 to
20,000 transcripts per human cell; Bishop et al. 1974;
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sampling, unreliable detection of many low abundance to quantify their relative abundance in the cell sample.
For each data set, we define its library as the list oftranscripts, experimental errors, and ambiguities in the

identification of many transcripts. sequenced tags that match mRNAs associated with
genes, together with the number of occurrences of eachA large body of experimental and theoretical litera-

ture on molecular mechanisms of gene expression con- specific tag. Let M denote the size of the library, i.e.,
the total number of tags in it, and let n(m, M) denotetrol makes it increasingly evident that stochastic pro-

cesses in transcription and translation machinery (as the number of distinct tags that have the expression level
m (occurring m times) in the given library of size M.well as within signaling pathways and cross talk between

different pathways) need to be considered to fully un- The observed value ñ(m, M) only approximates the
number of expressed genes with expression level m inderstand basic processes of gene expression. In particu-

lar, several experimental systems indicate that initiation the cell sample due to experimental errors, nonunique
tag-gene matching, and incorrect annotation of genesof gene transcription is a discrete process in which many

individual protein-coding genes existing in an off state (see below). Let J denote the observed expression level
for the most abundant tag in the library; J increases withcan be stochastically switched to an on state resulting

in the production of mRNAs in sporadic pulses (Ko the library size M. Then � J
m�1ñ(m, M) � N is the num-

ber of distinct tags in the library. The points (m, g(m))1992; Ross et al. 1994; Newlands et al. 1998; McAdams
and Arkin 1999; Hume 2000; Sutherland et al. 2000; for m � 1, . . . J, where g(m) � ñ(m, M)/N, form

the histogram corresponding to the empirical relativeOhlsson et al. 2001; Sano et al. 2001).
In this study we present evidence that the functional frequency distribution of expressed genes. This is a size-

frequency form of the empirical GELPF and it repre-form of the GELPF is invariant among eukaryotic cell
types. Stochastic and probabilistic mechanisms of the sents an estimate of the GELPF in the cell sample.

We found that the empirical GELPF histograms, con-initiation of the gene expression process can help ex-
plain the observed universality of the GELPF across dif- structed for analyzed yeast SAGE libraries, mouse and

human SAGE or cDNA libraries (Velculescu et al. 1995,ferent cell types in a multicellular organism and across
different organisms. We describe a new distribution 1999; Lal et al. 1999; Strausberg et al. 2000), as well as

Affymetrix microarray samples for yeast cells (Jelinskyfunction and derive from it a probabilistic model of
the growth of a population (e.g., the number of all and Samson 1999; Jelinsky et al. 2000), exhibited simi-

lar monotonically skewed shapes with a greater abun-transcripts) with many distinct classes (e.g., distinct ex-
pressed genes) in a complex system (e.g., observed SAGE dance of rarer transcripts and more gaps among the

higher-occurrence expression levels (Figures 1 and 2).transcriptome for a population of homogeneous cells)
as sampling increases. This model allows us to predict Several classes of skewed probability functions [Pois-

son, exponential, logarithmic series, simple power law,the frequency distribution of gene expression levels for
all genes and the total number of genes expressed in Pareto-like, and mixture of log-series and exponential

(Johnson et al. 1993)] were fit (see methods) to empiri-a representative cell averaged over time. The model
exhibits predictive power even when the sequencing cal gene expression level histograms for �50 human,

mouse, and yeast SAGE libraries; 30 human cDNA librar-database is incomplete and contains ambiguity in se-
quence to gene assignments. ies in Cancer Genome Anatomy Project (CGAP) data-

bases (http://www.ncbinlm.nih.gov/CGAP; http://www.
ncbinlm.nih.gov/SAGE); and 30 microarrays of normal

RESULTS
and treated yeast cells (http://www.hsph.harvard/gene
expression; Holstege et al. 1998).Distribution of the gene expression levels: We have

analyzed diverse large-scale gene expression databases The best fit by our criteria was obtained using the
discrete Pareto-like probability function,for different human tissues and cell lines (http://www.

ncbi.nlm.nih.gov/UniLib; http://www.ncbi.nlm.nih.gov/
f(m) � z�1/(m � b)k�1, (1)

UNIGENE; http://www.ncbi.nlm.nih.gov/CGAP/ncicgap;
http://www.ncbi.nlm.nih.gov/SAGE), mouse tissues where the f(m) is the probability that a randomly chosen

distinct tag (representing a gene) occurs m times in the(http://www.ncbi.nlm.nih.gov/UniLib), and yeast cells
(ftp://genome-ftp.stanford.edu.pub/yeast/tables/SAGE_ library. The function f involves two unknown parame-

ters, k and b, where k � 0 and b � �1; the normalizationData; http://www.sagenet.org; http://www.hsph.harvard/
geneexpression) to identify the GELPF for eukaryotic factor z is the generalized Riemann zeta-function value,

z � � J
j�11/( j � b)k�1. We call Equation 1 the general-cells. These data sets have been created by three dif-

ferent technologies: sequencing of clones in comple- ized discrete Pareto (GDP) model. Note that J, the maxi-
mum observed expression level, is a sample-size-depen-mentary DNA (cDNA) and SAGE libraries and oligo-

nucleotide microarray hybridization methods. These dent quantity J � J(M). The parameter k reflects the
skewness of the probability function; the parameter btechniques involve making cDNA sequences of the less

stable mRNA molecules and then using specific short- characterizes the deviation of the GDP distribution from
a simple power law (with b � 0; see, for example, dottednucleotide sequence tags that match different mRNAs
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Figure 1.—Empirical relative frequency distributions of the gene expression levels. Log-log plots are shown. (a) �, log-phase
yeast cell growth library with 20,096 SAGE tags; solid step-function line, GDP model with k � 0.974 � 0.004, b � �0.173 �
0.004; dotted line, simple power law with k � 1.03 � 0.005. Inset plot: �, empirical cumulative fraction function Re values [Re�
(� m

j�1 j · ñ( j, M))/(N · M)]for the � histogram (main plot); the solid line is the corresponding theoretical model R [R(m)�
(� m

j�1 j · f( j))/� J
j�1j · f( j)] computed by the GDP model (main plot). (Cumulative data reduce the apparent “noise” in the

histogram data.) (b) �, mouse mammary cells cDNA library 341 of size 36,675 ESTs; solid step-function line, GDP model with
k � 1.44 � 0.006, b � 1.34 � 0.002. (c) �, human colon cancer cells SAGE library 2892.2 of size 22,637 tags; solid step-function
line, GDP model for � data at k � 1.08 � 0.030, b � �0.28 � 0.010; �, mouse brain (primary meduloblastoma) cells SAGE
library 3871 of size 43,274 tags. (d) �, human choriocarcinoma cells cDNA library 2427 of size 10,087 ESTs; solid step-function
line, GDP model with k � 1.88 � 0.044, b � 1.34 � 0.005.

line in Figure 1a). The inset plot in Figure 1a demon- allowed us to suggest that at least 45% of the known
6200 genes/ORFs are present but at �1 copy per cell.strates that the fitted GDP model predicts the empirical

cumulative fraction function R e(m) (for the definition Table 1 clearly shows that the skewed GELPFs from such
filtered Affymetrix data for yeast cells at different phasesof R e see the Figure 1 legend); this demonstrates that

our model fits well over the entire range of experimental of cell life are all very similar and are all fitted by the
GDP model down to 0.5 transcripts per cell.values.

Figure 2 shows the frequency of the numbers of dis- Regardless of either the method used to generate the
gene expression profile (SAGE, cDNA library sequenc-tinct open reading frames (ORFs)/genes vs. hybridiza-

tion signal intensity values for Affymetrix microarray ing, or oligonucleotide microarray hybridization) or the
species studied, we have observed that the GDP func-hybridization data obtained for normal yeast cell tran-

scriptome (http://www.hsph.harvard/geneexpression; tional form fits the observed GELPFs. The parameters
of the fitted GDP, however, show a significant depen-Jelinsky and Samson 1999). After subtraction of back-

ground noise, the total (digital) hybridization signal dence on sample size, specific eukaryote species, and
methods used to generate the library (Table 1).intensity, s, was normalized to the typical number of

mRNA molecules per yeast cell (Jelinsky and Samson Effect of library size on gene expression level distri-
bution: Similarly sized libraries made using the same1999). The window plot in Figure 2 is the empirical

frequency distribution of the number of genes ex- method from many different human tissues and cell
lines have similar numbers of distinct gene tags and arepressed at s copies per cell. It has a skewed form with

a long right-side tail and with a left-side tail down to characterized by empirical GELPFs with nearly equiva-
lent parameters in their best-fit GDP models (see Tablethreshold levels of reliable detection of at least �0.5

copies per cell. The cooccurrence of the low-expressed 1). As the size of a library increases, the shape of the
empirical GELPF changes systematically: (1) p1, the frac-genes/ORFs in three or more of the six analyzed mi-

croarrays (http://www. hsph.harvard/geneexpression) tion of distinct tags represented by only one copy, be-
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Figure 2.—The empirical fre-
quency distribution of the hybrid-
ization signal intensity values for
Affymetrix microarray hybridiza-
tion data for normal yeast cell
genes/ORFs ( Jelinsky and Sam-
son 1999). We checked that the
background noise intensity signals
(�) were distributed with an ap-
proximately normal distribution
function with mean zero and stan-
dard deviation 0.054. Intensity sig-
nal distribution before (�) and
after (�) subtraction of the back-
ground noise from the signal val-
ues is shown. The total hybridiza-
tion signal intensity has been
normalized (by Jelinsky and
Samson 1999) with respect to the
mean number of mRNA mole-
cules per yeast cell. A point (s,
f(s)) on the major plot shows the
number of genes/ORFs, f, which
have the signal intensity value, s.
The vertical discontinuous line in-
dicates the lower bound of the “re-
liably” detectable intensity signal
values (the lower bound corre-

sponds to 0.5 transcripts per cell). The window plot (log-log plot) shows the signal intensity distributions before and after
subtraction of noise, shown over the full range of the positive signal intensity values.

comes smaller; (2) J increases in proportion to M; (3) or libraries 154 and 154.1 in Table 1 and Figure 3a).
In the case of SAGE libraries for different human cellthe parameter b becomes larger; and (4) the parameter

k increases and then slowly decreases (Figure 3; Table types, the Pearson correlation coefficient between the
library sizes and the values of parameter b equals 0.9.1). Despite significant variation in human tissue types

studied, the number of distinct tags, N, appears to be We observed that the values of parameter b approach
0 as M increases at relatively small sample sizes (foressentially invariant for the similar-size SAGE libraries

(Figure 3b). Although the yeast genome is less complex, example, �10,000 SAGE tags, Table 1).
Although the Pareto-like models appear to fit empiri-yeast SAGE libraries behave similarly (Table 1; Figure

4a). We also found that for yeast, mouse, and human cal GELPFs down to the least transcript abundance ob-
served (�0.2–0.5 copies per cell in yeast microarraySAGE and cDNA libraries, all values of the scaling pa-

rameter a (a � J/M, which represents the frequency of experiments, Figure 2), theoretically these models dem-
onstrate an unlimited increase in the number of speciesoccurrence of the most common transcript within the

library or cell population) fall within narrow ranges (i.e., different expressed genes) as the sample size ap-
proaches infinity. This contradicts the fact that there is a(Table 1). These observations suggest that all studied

cell types have a common skewed underlying probability finite number of different mRNAs (different expressed
gene products). Thus these models must be consideredfunction form.

Importantly, in so-called “scale-free” (or self-similar, at best empirical approximations of an underlying prob-
ability. We have developed a construction model (seei.e., any part of the system is statistically similar to the

whole) biological and physical systems, described by a methods and appendix) for the underlying probability
distribution. When this distribution is finitely sampled,simple power law (b � 0; j � ∞; k, z are the positive

constants), the parameter b � 0 and the parameter k is the results fit by Pareto-like GELPFs. The model explic-
itly exhibits the observed sample size dependence butassumed to be independent of the size of the system

(Stanley et al. 1999; Jeong et al. 2000; Gomez et al. retains a finite limit to the number of different classes
as the sample size increases. Importantly, this model2001). We did not observe such properties in the

GELPFs; they display a nonlinear, rather than linear assumes that each expressed gene has a positive probabil-
ity of being observed in any given sample and also thattrend in log-log coordinates and a sample-size depen-

dence. For example, Table 1 shows that the parameter the expression level for this gene is statistically indepen-
dent of the expression levels for other genes. The ex-b in the GDP model is significantly different from 0 for

most data sets, and b becomes larger as the library size pression of those small groups of genes that are regu-
lated by common sets of transcription factors would beincreases (see, for example, libraries 2892.1 and 2892.2
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TABLE 1

Fitting of the empirical frequency distributions of the gene expression levels

No. of
Methods and Library distinct
libraries size, M tags, N M/N p1 J J/M k �SE b �SE �

SAGE (yeast)
Log-phase 20,096 5,324 3.78 0.66 636 0.032 0.97 0.004 �0.173 0.004 9.3
S-phase 19,871 5,785 3.44 0.67 561 0.028 0.98 0.004 �0.197 0.004 9.8
G2/M-phase 19,527 5,303 3.68 0.67 519 0.027 0.96 0.006 �0.195 0.006 8.8
Pooled library 59,494 11,329 5.25 0.62 1,716 0.029 0.94 0.008 �0.108 0.008 7.7
Total true tags 47,393 5,819 8.14 0.46 1,716 0.036 0.97 0.001 0.494 0.001 7.7

SAGE (mouse)
19018 43,274 17,754 2.43 0.72 630 0.015 1.19 0.001 �0.165 0.001 8.6
20427 61,240 24,796 2.46 0.73 425 0.007 1.14 0.001 �0.195 0.001 8.0

Human
154 81,516 19,137 4.26 0.53 1,598 0.02 1.25 0.012 0.57 0.016 7.1
144 61,245 17,323 3.53 0.56 521 0.009 1.39 0.005 0.62 0.006 9.8
143 51,949 13,589 3.82 0.56 370 0.007 1.27 0.006 0.49 0.007 9.5
153 51,906 16,257 3.19 0.59 659 0.013 1.39 0.008 0.48 0.009 8.9
161 49,334 15,182 3.25 0.59 832 0.017 1.44 0.010 0.57 0.007 8.3
122 45,911 15,243 3.01 0.61 450 0.010 1.37 0.023 0.40 0.024 7.1
160 42,978 13,394 3.21 0.59 338 0.008 1.36 0.014 0.44 0.015 8.2
146 37,512 13,033 2.88 0.64 370 0.010 1.38 0.028 0.30 0.027 9.3
145 27,229 9,452 2.88 0.64 326 0.012 1.30 0.009 0.30 0.009 9.3
123 26,669 10,182 2.62 0.65 323 0.012 1.42 0.010 0.24 0.009 9.3
2892.2 22,637 9,348 2.42 0.74 221 0.010 1.08 0.030 �0.28 0.010 11
171 20,050 7,702 2.6 0.72 440 0.022 1.40 0.034 �0.027 0.025 8.3
167 16,361 5,900 2.77 0.69 561 0.034 1.27 0.063 0 0 9.1
166 14,616 5,383 2.72 0.7 462 0.032 1.28 0.010 0.015 0.015 10
172 8,936 4,507 1.98 0.76 210 0.024 1.36 0.026 �0.144 0.017 8.5
154.1 8,936 4,590 1.95 0.76 181 0.030 1.36 0.023 �0.123 0.013 9.2
2892.1 6,313 3,531 1.79 0.81 78 0.012 1.05 0.015 �0.480 0.008 10
1698 2,861 1,961 1.46 0.83 19 0.007 1.09 0.110 �0.500 0.058 8.3

cDNA (LifeTech)
Mouse, Lib. 341 36,675 8,019 4.57 0.42 1,641 0.045 1.44 0.010 0.90 0.06 5
Mouse, Lib. 946 12,309 4,023 3.06 0.56 427 0.035 1.49 0.001 0.75 0.003 7.8
Human, Lib. 2427 10,087 3,586 2.81 0.54 246 0.029 1.88 0.040 1.34 0.05 7.1

Affymetrix arrays (yeast)
Log-phase 16,762 3,000 5.59 0.46 144 0.009 0.86 0.001 0.37 0.003 7.4
G1-phase 17,408 2,862 6.08 0.45 178 0.010 0.85 0.001 0.36 0.004 6.7
S-phase 16,440 2,903 5.66 0.47 151 0.009 0.85 0.001 0.32 0.004 7.0
G2/M-phase 17,036 2,900 5.87 0.45 156 0.009 0.84 0.001 0.36 0.004 6.9

Characterization of the empirical frequency distributions of the gene expression levels for yeast, mouse, and human cell-type
libraries and goodness-of-fit analysis using the generalized discrete Pareto (GDP) model. M is the number of tags (a size of the
library); N is the number of distinct tags. p1 is the fraction of distinct tags represented by one copy in the library. J is the maximum
observed gene expression level in the library. k and b are the parameters of the GDP model. � is the goodness-of-fit criterion
(see methods). � ranges between excellent (11–8), very good (8–6), and satisfactory (6–4). Yeast SAGE libraries: cells on G2/
M-, S-, and log-phase stages of cell life; a pool of these three libraries; and a true tags library. Mouse SAGE libraries (Unilib IDs):
19018 (brain, meduloblastoma), 20427 (brain, normal, purified granular cell precursors). Human SAGE libraries (Unilib IDs):
154 (normal brain cells, �95% white matter), 144 [H1110, glioblastoma (GBM)], 143 [H392, GBM cell line (CL)], 153 (pooled
GBMs), 161 (pooled normal brain), 122 (HCTT116, colon cancer CL), 160 (NHA, normal astrocyte CL), 146 (RKO, colon
cancer CL), 145 (SW837, colon cancer CL), 123 (Caco2, colon cancer CL), 2892.2 (LNCaP, the prostate cancer CL library 2892
after 1 year), 171 (primary colon cancer), 167 (normal colon), 166 (normal colon), 172 (primary colon cancer), 154.1 (normal
brain tissue, sublibrary taken from library 154), 2892.1 (LNCaP, initial library 2892), and 1698 (ovary carcinoma). cDNA libraries
(Life Technologies method): mouse mammary cell library 341, mouse normal kidney library 496, and human choriocarcinoma
cell library 2427. Affymetrix microarrays: normal yeast cells on log-, G1-, S-, and G2/M-phases of cell life (data from database
http://www.hsph.harvard/geneexpression).

expected to show correlations within any given cell. expressed genes would likely be statistically insignifi-
cant. Furthermore, since expression profiles are ob-However, the average correlation between expression

events for a given gene and all other (thousands of) tained from cells at one instant, specific transcription
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events driven by the same transcription factors would SAGE libraries (Velculescu et al. 1997) of normal yeast
have weaker correlations due to temporal and spatial cell samples show that at least 2000 yeast genes/ORFs
fluctuations (e.g., chromatin dynamics) within a given are expressed, but at �0.5 copies per cell on average
cell and certainly when averaged over a large population (see, for example, Figures 2 and 4b). At the level of the
of cells. This assumption of essentially statistical inde- individual cell, these rare transcription events can be
pendence among all transcription events in a popula- treated as stochastic events. A mathematical description
tion of cells is consistent with experimental observations of our model of the GELPF is presented in methods
(Chelly et al. 1989; Ko 1992; Ross et al. 1994; New- and the appendix.
lands et al. 1998; Fiering et al. 2000; Sano et al. 2001). Analysis of the empirical GELPF using SAGE data-
Even for synchronized yeast cells arrested in G1-, S-, bases: Using the LG model (see Equations 3 and 4
and G2/M-phases of cell life, the empirical GELPFs in and methods for a definition of the LG model) to fit
microarray experiments were very similar to each other empirical population growth curves like those presented
and to the GELPF observed for yeast cells in log-phase in Figure 3b, we can predict the frequencies of the gene
of cell growth (see Table 1). These results suggest that expression levels p1, p2, . . . , for a given cDNA or SAGE
the shape of the empirical GELPFs is relatively robust library size (Figure 3c); pi is the probability that a ran-
to different correlations between expressed genes at dom gene has i transcripts. Application of the LG model
least in normal yeast cells at different phases of cell to human SAGE databases results in extremely large
life. In addition, our analyses of the seven microarray estimates (138,000 distinct tags expressed in brain and
(Jelinsky and Samson 1999; Jelinsky et al. 2000) data 127,000 expressed in a “typical” human tissue) com-
sets for normal yeast cell samples and pooled three pared to the total number of genes in the genome

(30,000–40,000 genes; International Human Genome
Sequencing Consortium 2001; Venter et al. 2001;
Kuznetsov 2002). This demonstrates the well-known
discrepancy between the numbers of different ex-
pressed sequences in SAGE or Unigene libraries and
the number of human genes. This large discrepancy
can be attributed to a variety of sources including se-
quencing errors, multiple restriction sites on the same
transcripts leading to multiple tags per gene, and alter-
native splicing (Lal et al. 1999; Velculescu et al. 1999;

Figure 3.—Effects of library size on the empirical GELPF,
on the number of distinct tags, and on the frequencies of
low-abundance transcripts. (a) Log-log plot. �, the empirical
GELPF for human white matter brain tissue library 154 of size
81,516 tags; solid step-function line, the GDP model for � data;
�, average frequency of expression levels for 10 sublibraries of
size 6313 tags taken at random without replacement from
library 154 and represented in an average by 3497 distinct
tags; dotted step-function line, GDP model (at k � 1.62 �
0.07, b � 0.01 � 0.004) for � data. (b) The number of distinct
tags in SAGE libraries. �, a library presented in Table 1;
solid line, logarithmic growth (LG) model (Equation 3 in
methods) with d � 112,786 � 4343, c � 0.41 � 0.007 for the
� data set. The two highest � points present a pool of libraries
143 and 153 and a pool of libraries 144 and 153, respectively.
�, the number of distinct tags in library 154 and in sublibraries
sampled without replacement from library 154; dotted line,
LG model with d � 119,627 � 1072, c � 0.39 � 0.001) for
the � data set. (c) Prediction of frequencies of distinct tags
occurred one, two, and three times in human tissue libraries.
�, a sublibrary of library 154 formed by choosing tags ran-
domly without replacement from brain tissue SAGE library
154; dotted lines link values for functions p1(M), p2(M), and
p3(M) predicted by the BD model for corresponding � data
sets. �, human cell library; solid lines link values for functions
p1(M), p2(M), and p3(M) predicted by the BD model for corre-
sponding � data sets.
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Chen et al. 2000; Stollberg et al. 2000; Caron et al.
2001).

Analysis of errors in SAGE cell libraries and predic-
tion of the number of expressed genes in a population
of cells: Without removing experimental errors in SAGE
libraries one cannot obtain an accurate estimate of the
number of expressed genes, Nt, and the GELPF. Using
our probabilistic model (Equations 2–5, methods), we
developed a computational methodology to estimate
the true GELPF for a SAGE library, even when the SAGE
library is incomplete (contains only a fraction of all
expressed genes for the sample cell type). Our method-
ology is as follows.

1. We selected only tags whose location on the yeast
chromosome map coincided with protein-coding
gene or ORF regions (called here “true tags”).

2. We constructed population growth curves for the
numbers of different genes/ORFs found in the tag
location database.

3. We fitted the growth curve for the numbers of dis-
tinct genes/ORFs by Equations 3 and 4.

4. We calculated Nt, using Equation 5, and, finally, cal-
culated the true underlining GELPF, using Equa-
tion 2.

To validate this approach, we analyzed 11,329 yeast cell
distinct SAGE tags representing 59,494 SAGE tags of
the three yeast cell SAGE libraries (Velculescu et al.
1997, Table 1). Since almost all yeast protein-coding
genes/ORFs and their location on chromosomes are
known, we can obtain the true distinct tags and their
expression levels in a yeast SAGE library by eliminating
erroneous tags that fail to match known 3	 NLaIII genes/
ORFs regions and adjacent 3	 end regions presented in
the chromosome tag location database (http: genome-
http://www.stanford.edu/Saccharomyces). This database
was generated by Velculescu et al. (1997) and currently

Figure 4.—Correction of the empirical histogram for yeast
cell SAGE library, the population growth curves, and the
GELPF for a single yeast cell. (a) Log-log plot. �, number of

follows. For each ORF/gene, the scaled hybridization intensitydistinct tags of 5303 distinct tags represented by 19,527 tags
in a G2/M phase-arrested cell library; dashed step-function signal value, I, in the yeast GeneChip database (http://

www.hsph.harvard/geneexpression, Jelinsky et al. 2000), wasline, the GDP model with b � �0.195 � 0.005, k � 0.96 �
0.006 for � data; �, number of true tags of the same library converted to a transcript count per cell using the empirical

formula m � (I � 20)/165, rounded to the nearest integerafter removing erroneous tags; solid step-function line, GDP
model with b � 0.207 � 0.013, k � 0.991 � 0.011 for � data. ([0.5, 1.5), [1.5, 2.5), . . . ). The correction factor 20 is the

average background intensity signal; the scaling factor 165(b) Population growth curves. �, number of true distinct tags
of sublibraries from pooled yeast library of 47,393 true tags; was estimated by comparing the hybridization signal intensity

values with expression levels of 18 genes, whose absolutedashed line, LG model with d � 20,000 � 1946, c � 0.356 �
0.02 for � data; �, number of genes/ORFs observed in these mRNA levels were reliably determined by quantitative hybrid-

ization experiments (Iyer and Stuhl 1996) and observed insublibraries; LG model with d � 6575 � 185, c � 0.579 �
0.01 for � data. (c) Log-log plot. Solid step-function line, the several normalized microarray hybridization data sets (Hols-

tege et al. 1998; Jelinsky and Samson 1999). These genesfraction of genes/ORFs estimated by the BD model for a
single yeast cell vs. expression level; �, relative frequency vs. are RPS4BA, GCN4, SPT15, RAS2, RPO21, FAR1, DED1, HIS3,

CDC28, TRP3, GAL11, HAT1, POL12, NUP157, PRP4, PRP3,expression level generated from the fitted GDP model (with
k � 1.56, b � 2.17) after 3000 random generations of occur- PEX14, and RAD52. Dashed line, the fitted GDP model graph

with k � 0.86 � 0.01, b � 0.37 � 0.003 for � data. In thisrence number value m (see Simulation of theoretical histograms
in methods); �, relative frequency of 3000 genes/ORFs vs. analysis, we excluded the genes/ORFs whose expression levels

(after subtraction of the noise and normalization of the signalexpression level in a single log-phase yeast cell, estimated from
Affymetrix microarray hybridization data (http://www.hsph. intensity to transcript count per cell) were �0.5 copy per cell

(see Figure 2).harvard/geneexpression). This histogram was constructed as
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contains 8480 distinct tags, matching 4735 of �6200 also determined the GELPF on the basis of Affymetrix
microarray data sets (Jelinsky and Samson 1999; Jelin-known yeast genes/ORFs. We found that 25% (2849

distinct tags) of the 11,329 analyzed distinct tags failed sky et al. 2000). Figure 4c shows a histogram constructed
for the microarray hybridization experiment (Jelinskyto match the yeast genome and these tags were associ-

ated with sequencing errors, 23.5% (2661 distinct tags) et al. 2000) for normal yeast cells. We converted the
hybridization intensity signal values to gene expressionfailed to match ORFs and adjacent 3	 end regions, and

51.4% (5819 distinct tags) were classified as the true values with 0.5 transcripts per cell chosen as a reasonable
low-limit cutoff point (see also Figure 2). In this case,distinct tags. Also, we found that 1689 distinct tag se-

quences of the 2661 distinct failed tags matched anti- 3000 more highly expressed genes/ORFs representing
�16,000 transcripts per cell were found. Figure 4c showssense sequences within 1504 genes/ORFs.

Figure 4a shows empirical GELPF for distinct SAGE that the GELPF for the Affymetrix microarray data fol-
lows the GDP model (k � 0.86 � 0.001, b � 0.37 �tags in the G2/M phase-arrested yeast cell library con-

tains 19,527 tags with 5303 distinct tags. By filtering 0.003) and is consistent with the GELPF for corrected
SAGE data. Similar skewed frequency distributions werethese tags by matching in the tag location database, we

discovered 3239 erroneous tags (16.6% of the 19,527 also observed (see examples in Table 1) in 30 other
microarray experiments using normal and stressed yeasttags in the library) corresponded to 2103 distinct tags.

Most of the 2103 distinct erroneous sequences found cells (Holstege et al. 1998; Jelinsky and Samson 1999;
Jelinsky et al. 2000).in the set of 3239 erroneous tags occur only one or two

times. The remaining 16,288 tags corresponded to 3200
distinct tags with matched 2936 genes/ORFs in the tag

METHODSlocation database.
By sampling randomly from a pooled library con- Binomial differential distribution and an estimator

taining all the observed true tags from the three SAGE of the total number of expressed genes: Let M denote
libraries, we constructed population growth curves for the total number of transcripts in a given “error-free”
both the number of distinct tags chosen and the corre- library and let N denote the number of distinct gene
sponding number of different genes/ORFs found in tags (or tag/signals converting to genes) for that library.
the tag location database (Figure 4b). Sample size- Let pm denote the probability that a randomly chosen
dependent LG model (Equations 3 and 4) fits detected gene is represented by m associated transcripts in the
numbers of both distinct true tags and different genes/ library for m � 1, 2 , . . . . On the basis of a multinomial
ORFs. In the case of distinct true tags (�, Figure 4b), distribution model for sampled transcripts, when M is
our estimator (Equation 5) once again predicts a very large enough, we obtain the discrete probability func-
large value of 25,103 � 2000 distinct true tags compared tion pm, in terms of M and N, as
to the total number of known yeast genes. For genes/
ORFs (�, Figure 4b), a more reasonable estimate of

pm � (�1)m�1 1
N

M!
m!(M � m)!

dmN
dMm

(2)the total number of expressed genes, Nt � 7025 � 200,
was obtained. After minor corrections (see Accuracy of

(see the appendix), where m � 1, 2, . . . . Note that Nan estimate of the number of expressed genes for yeast cells in
is treated as a function of M, so pm is a function of M.methods), this estimate is consistent with Cantor and
We call this function the binomial differential (BD)Smith (1999) and Johnson (2000) estimates. Thus, we
function. Taking m � 1 in Equation 2, we obtain thecan suggest that all or almost all yeast genes are ex-
differential equationpressed in a growing normal yeast cell population, i.e.,

Nt � G, where G is the total number of genes in the dN/dM � p 1N/M, (3)
entire yeast genome.

Using the estimated parameters c � 0.579 and d � with N(1) � 1. Equation 3 defines the “logarithmic
growth” (LG) function N(M). p1 is a decreasing function6580 in the LG function (Equations 3 and 4, methods)

and an estimate Mcell � 15,000 of the number of mRNAs of M (see Figure 3c). We use the empirical approxima-
tion (Kuznetsov 2001)per yeast cell (Velculescu et al. 1997), Equation 5

(methods) predicts 3009 genes/ORFs/cell. This esti-
mate is consistent with our estimate for a single yeast p 1 �

1 � 1/dc

1 � (M/d)c
, (4)

cell in the G2/M phase-arrested state (2936 genes/ORFs
by SAGE data) and with our estimates for yeast cells by where c and d are positive constants. Using an explicit
Affymetrix microarray data (Table 1). specification of p1 allows us to fit the BD and LG models

The GELPF in a single yeast cell: The GELPF for a to empirical histograms. With p1 defined by Equation
single yeast cell was estimated for corrected data (Figure 4, Equation 3 has an exact solution for N(M) in the
4a), using both the BD and GDP models (see methods); limit as M → ∞:
the results are presented in Figure 4b. To validate our
mathematical models used to analyze SAGE data, we N(∞) � Nt � (1 � dc)(1�1/d c )/c. (5)
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Nt is an estimator of the number of expressed genes in value N. Note the corresponding value M is randomly
determined by our sampling (see Figure 4c).a large population of cells. Using Equation 2 with fitted

values of the parameters d and c provides a mean of Goodness-of-fit analysis methods, numerical calcula-
tions, and software: Parameters in models were esti-computing p1, p2, . . . at a given library size M.

Estimation of the GELPF for a single cell: First, we mated MLAB mathematical modeling software (Civi-
lized Software, Silver Spring, MD, www.civilized.com).use the BD model (Equation 3) with fitted parameters

c and d in p1(M) to compute the probability values p1, For goodness-of-fit analysis, we used the modified
Akaike information criterion [or model selection crite-p2, . . . , p6 for 3009 yeast genes/ORFs corresponding

to the library size 15,000 transcripts. Because the GDP rion (MSC)],
model is a good approximation of BD distribution at

� � log� �
J

m�1

(g(m) � E(g))2/ �
J

m�1

(g(m) � f(m))2� � 2v/J,fixed M (see Figure 3, Figure 4c, and methods), it is
acceptable to use the GDP model to estimate pm for

where m � 1, 2, . . . , J. In our case m is the expressionlarger m. (This use of the GDP model was necessary
level value and J is the maximum observed gene expres-because there are no readily available numerical algo-
sion level in the library; g is the empirical relative fre-rithms that do not accurately compute values of high-
quency distribution, f is the theoretical probability dis-order derivatives.) We fit the GDP model (Equation
tribution function with v unknown parameters, and1) to the six points predicted by the BD probability
E(g) is the mean value of observed data. Note, the �distribution at constraints M � 15,000, J � 0.028*M and
is independent of the scaling of data points. � rangesextrapolate the fitted GDP model to estimate values of
between excellent (11–8), very good (8–6), satisfactorypm for m � 6 (solid step line in Figure 4c). To check
(6–4), and poor (4–1).the self-consistency of our predictions, we estimated the

We also used the cumulative fraction function R (seetotal number of transcripts, M, from the fitted GDP
Figure 1), as well as several regular goodness-of-fit crite-model and noted that the result was 15,000.
ria (sum of squares for deviations, the Wilcoxon two-Accuracy of the estimated number of expressed genes
sample rank-order test).for yeast cells: Our estimate, Nt � 7024 genes/ORFs,

By our goodness-of-fit criteria, the GDP model is supe-is �4–10% higher than current estimates of the total
rior to simple power law, as well as many other skewnumber of distinct ORFs in the yeast genome (6200–
probability functions (Poisson, log-series, and exponen-6760 genes/ORFs; Cantor and Smith 1999; Johnson
tial) and mixed logarithmic series � exponential distri-2000). This relatively small difference could be due to
bution. For example, for library sizes �40,000 SAGEthe existence of erroneous and redundant tags that
tags, the values of the � ranged between 3 and 6 (satis-nevertheless match genes/ORFs and their adjacent ge-
factory or poor); however, � values ranged in (11–7) fornomic regions. Our analysis does not take into account
the GDP model. Similar superiority of the GDP modelnonannotated ORFs and overlapping ORFs that match
(measured by the R and � criteria) was observed afterthe same tag. Additionally, �1–3% of transcripts would
goodness-of-fit analysis of the distribution models tobe expected to lack an NlaIII site and would therefore
microarray data.be missing in the database.

Symbolic differentiation and subsampling were per-In the case of yeast, �5% of the genes show alternative
formed using MLAB. Monte Carlo experiments weresplicing. Furthermore, splice variants might have the
performed using MLAB and programs written in For-same primary tag, alternative tags, or become SAGE
tran-90. Data-mining tools of the Cancer Research Anat-silent, depending on the restriction sites remaining. We
omy Project including X profiling and SAGE/map (Lalsummed all SAGE tags that matched ORFs to obtain
et al. 1999; http://www.ncbi.nlm.nih.gov/SAGE) werethe GELPF, so the only effect would be to miss the small
also used.number of splice variants lacking a NLaIII restriction

site. We do not know the frequency distribution of alter-
native splicing transcripts in yeast and human cells. With

DISCUSSION
respect to our model of GELPF, we might assume that
splice variants for yeast cells will have a skewed form of Even with their large differences in genome organi-

zation yeast, mouse, and human cells all demonstratethe probability distribution and not have a significant
effect on our estimate of the true GELPF. similar skewed long-tail Pareto-like gene-expression

level distributions. The observed distributions have theSimulation of theoretical histograms: Given the num-
ber of expressed genes, N, and the best-fit parameters following characteristics in common: There are few redun-

dant and many rare transcripts. The universality of thek and b of the GDP distribution, we sample the values
of m at random on the basis of the function f(m) (Equa- empirical GELPF form for different eukaryotic cells sug-

gests a common underlying probabilistic mechanism asso-tion 1) N times (once for each gene). Then we count
the occurrence numbers of generated values m in the ciated with the gene expression process conserved in

eukaryote evolution. Similar distributions have been ob-intervals (0–1], (1, 2], . . . and construct the simulated
gene expression level frequency histogram for a given served for the connectivity numbers of metabolic net-
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works (Jeong et al. 2000), for the rates of protein synthe- the majority of genes are thought to be transcribed over
a short period of time (4–7 min per transcript) andsis of prokaryotic organisms (Ramsden and Vohradsky

1998), in different DNA-related phenomena (see Li infrequently, less than once per hour (Jackson et al.
2000). On the basis of a similar methodological ap-1999; Stanley et al. 1999; Gomez et al. 2001 for refer-

ences), and in many models of the self-organized sys- proach for estimating the GELPFs for a SAGE tran-
scriptome, which we used in this article for yeast SAGEtems (http://linkage.rockfeller.edu/wli/zipf). All such

systems exhibit a strong stochastic component. data sets, the analysis of a large (�600,000 SAGE tags)
human transcriptome data set (Velculescu et al. 1999)Both oligonucleotide microarray hybridization and

construction of SAGE libraries allow large-scale charac- indicated that �70% of all protein-coding human genes
are expressed with less than one transcript per cell onterization of gene expression profiles including low-

abundance transcripts. However, in both technologies, average (Kuznetsov 2002). Such low numbers of tran-
scripts in a cell population may be due to the actionthe determination of expression levels at one or fewer

transcripts per cell is limited by issues of limited sensitiv- of a random transcription process in individual cells
(McAdams and Arkin 1999; Fiering et al. 2000; Humeity and erroneous measurements. These limitations be-

come more severe with increasing size of the tran- 2000; Sutherland et al. 2000).
Initiation of transcription has been observed to occurscriptome. We developed a comprehensive statistical

approach to analyzing the empirical distribution of ex- sporadically and randomly both in time and location
on chromosomes in a variety of cell systems (Ko 1992;pressed genes for large transcriptomes obtained by the

SAGE method by first removing sequence errors using Ross et al. 1994; Newlands et al. 1998; Sano et al. 2001).
In this study, we present additional data and argumentschromosome location maps for SAGE tags and then

applying statistical modeling and the BD model (Equa- supporting our hypothesis that at the level of the individ-
ual cell the transcription events for a given gene at antions 2–5) to filtered data (Figure 4). Our resulting

SAGE data were similar to the GELPF data that we instant appear to be statistically independent of expres-
sion levels for thousands of other genes. The existenceobtained for normalized oligonucletide microarray hy-

bridization data sets for yeast cells. Our methodology of such a random transcription process would imply
that all or almost all protein-coding genes in a genomeof construction of the correct underlying probability

distribution could be used to analyze large SAGE tran- should have a small but positive probability to be tran-
scribed in any given cell during any fixed time interval.scriptomes for different mammalian cells and cell types,

including human transcriptomes, and for evaluation of This suggestion is consistent with the observation that
small transcript copy numbers occur even for variousthe new modifications of the SAGE method using, for

example, 21-mer tags. tissue-specific genes in human cells of different type,
such as fibroblasts, lymphocytes, etc. (Chelly et al.Our statistical modeling approach provides a justifi-

able way to compare the GELPFs using samples (cDNA 1989). Although not all cells of a population would have
a copy of a specific transcript at a given moment, weor SAGE libraries) with different sizes. This approach

also can be used to permit the use of exact statistical would expect to see all these genes expressed, at least
at a low level, in a sufficiently large cell population attests for different transcriptomes (i.e., obtained for nor-

mal and cancerous cell tissues). Our novel numerical any point in time. That is, ergodicity holds. This point is
supported by the yeast expression data in the microarrayestimator of the number of species (i.e., expressed

genes; Equation 5) can be used to estimate the number database (Jelinsky et al. 2000): We observed that only
250 ORFs (�150 of them are “questionable” or “hypo-of expressed genes in a single cell and in a population

of the cells by SAGE or cDNA data sets, even if data are thetical” ORFs) of �6200 genes/ORFs were not ex-
pressed in any of six presented microarray samples fromincomplete and exhibit severe experimental errors.

On the basis of our analysis of the GELPF in the normal growing yeast cells.
In mammalian cells, a significant fraction of genesnormalized yeast microarray databases (Jelinsky and

Samson 1999; Jelinsky et al. 2000) 1330 � 45 genes/ are silenced (transcripts are not observed); the silent
state of a gene can be inherited, but later reactivatedORFs are represented on average by a single mRNA

molecule per cell, at least 2000 genes/ORFs are ex- involving the stochastic, all-or-none mechanism at the
level of a single cell (Sutherland et al. 2000). Low-pressed at 0.1–0.5 molecules per cell on average, and

�47% (2917) of all yeast genes are expressed at less probability transcription events for many genes in a
cell could be regulated by its own specific transcripts.than one transcript per cell. Our estimate for yeast cell

SAGE data is consistent with these estimates. Approxi- Sporadic initiation of the transcription process for rarely
expressed genes could also be under dynamical controlmately 1200 genes/ORFs are represented on average

by a single mRNA molecule per yeast cell (Figure 4b). of some non-protein-coding genes associated with stress-
response control (Eddy 2001). Many RNAs transcribedThe population growth curve for genes/ORFs (Figure

4b) predicts that 3800 additional genes/ORFs (�55% from these genes represent anti-sense RNA transcripts
that overlap protein-coding genes on the other genomicof all yeast genes) are expressed at less than one tran-

script per cell. Even in proliferating mammalian cells, strand. We might suspect that in response to environ-
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mental changes, various stress conditions, and local of different transcripts. For example, the multivariate
multinomial distribution model can be constructed (seefluctuation of molecular composition, the initiation of

transcription events for many rarely expressed genes in Johnson et al. 1997). Such a distribution model would
be suitable, in particular, for analysis of gene-regulatingeach cell could be under dynamical control of these

noncoding genes. Such autoregulation might tend to network data representing gene expression profiles for
individual cells sampled with replicates from an “iso-keep the low-expressed gene “one-half on,” thus sporadi-

cally providing the mechanism of low expression for genic” cell population at several periods of observation.
Identification of such a multivariate multinomial distri-many genes in a cell population.

Physically, random “basal” transcription of genes bution model may help to estimate the biologically sig-
nificant correlations between genes and evaluate themight reflect nonlinear responses of the independent

“gene transcription complexes” to internal or external stochastic component in dynamics of gene expression
clusters at low expression levels.fluctuations including thermal molecular motion. Noise

in nonlinear dynamical systems can play a constructive The authors thank V. Velculescu for providing the supplementary
role: It can, for example, improve a system’s sensitivity information on the yeast cell SAGE database. We thank J. Berzofsky,

I. Belyakov, K. Chumakov, R. Nossal, R. Strausberg, A. Strunnikov, T.to weak signals (Wiesenfeld and Jaramillo 1998). If
Tatusov, and two reviewers for critical comments on the manuscript.it is so, noise in the gene-expression machinery could
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